BDWreg
Bayesian Inference for Discrete Weibull Regression
A Bayesian regression model for discrete response, where the conditional distribution is modelled via a discrete Weibull distribution. This package provides an implementation of Metropolis-Hastings and Reversible-Jumps algorithms to draw samples from the posterior. It covers a wide range of regularizations through any two parameter prior. Examples are Laplace (Lasso), Gaussian (ridge), Uniform, Cauchy and customized priors like a mixture of priors. An extensive visual toolbox is included to check the validity of the results as well as several measures of goodness-of-fit.
- Version1.3.0
- R version≥ 3.0
- LicenseLGPL-2
- LicenseLGPL-2.1
- LicenseLGPL-3
- Needs compilation?No
- Last release01/29/2024
Team
Hamed Haselimashhadi
Insights
Last 30 days
This package has been downloaded 232 times in the last 30 days. Now we're getting somewhere! Enough downloads to populate a lively group chat. The following heatmap shows the distribution of downloads per day. Yesterday, it was downloaded 4 times.
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Last 365 days
This package has been downloaded 2,924 times in the last 365 days. Consider this 'mid-tier influencer' status—if it were a TikTok, it would get a nod from nieces and nephews. The day with the most downloads was Sep 11, 2024 with 40 downloads.
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Imports5 packages