BMRMM
An Implementation of the Bayesian Markov (Renewal) Mixed Models
The Bayesian Markov renewal mixed models take sequentially observed categorical data with continuous duration times, being either state duration or inter-state duration. These models comprehensively analyze the stochastic dynamics of both state transitions and duration times under the influence of multiple exogenous factors and random individual effect. The default setting flexibly models the transition probabilities using Dirichlet mixtures and the duration times using gamma mixtures. It also provides the flexibility of modeling the categorical sequences using Bayesian Markov mixed models alone, either ignoring the duration times altogether or dividing duration time into multiples of an additional category in the sequence by a user-specific unit. The package allows extensive inference of the state transition probabilities and the duration times as well as relevant plots and graphs. It also includes a synthetic data set to demonstrate the desired format of input data set and the utility of various functions. Methods for Bayesian Markov renewal mixed models are as described in: Abhra Sarkar et al., (2018) doi:10.1080/01621459.2018.1423986 and Yutong Wu et al., (2022) doi:10.1093/biostatistics/kxac050.
- Version1.0.1
- R versionunknown
- LicenseMIT
- Needs compilation?No
- Abhra Sarkar et al., (2018)
- Yutong Wu et al., (2022)
- Last release04/22/2024
Team
Yutong Wu
Abhra Sarkar
Show author detailsRolesAuthor
Insights
Last 30 days
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Imports5 packages