BTM
Biterm Topic Models for Short Text
Biterm Topic Models find topics in collections of short texts. It is a word co-occurrence based topic model that learns topics by modeling word-word co-occurrences patterns which are called biterms. This in contrast to traditional topic models like Latent Dirichlet Allocation and Probabilistic Latent Semantic Analysis which are word-document co-occurrence topic models. A biterm consists of two words co-occurring in the same short text window. This context window can for example be a twitter message, a short answer on a survey, a sentence of a text or a document identifier. The techniques are explained in detail in the paper 'A Biterm Topic Model For Short Text' by Xiaohui Yan, Jiafeng Guo, Yanyan Lan, Xueqi Cheng (2013) https://github.com/xiaohuiyan/xiaohuiyan.github.io/blob/master/paper/BTM-WWW13.pdf.
- Version0.3.7
- R versionunknown
- LicenseApache License 2.0
- Needs compilation?Yes
- Last release02/11/2023
Documentation
Team
Jan Wijffels
BNOSAC
Show author detailsRolesCopyright holderXiaohui Yan
Show author detailsRolesContributor, Copyright holder
Insights
Last 30 days
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Imports1 package
- Suggests2 packages
- Linking To1 package
- Reverse Suggests2 packages