ConsRankClass
Classification and Clustering of Preference Rankings
Tree-based classification and soft-clustering method for preference rankings, with tools for external validation of fuzzy clustering. It contains the recursive partitioning algorithm for preference rankings, non-parametric tree-based method for a matrix of preference rankings as a response variable. It contains also the distribution-free soft clustering method for preference rankings, namely the K-median cluster component analysis (CCA). The package depends on the 'ConsRank' R package. Options for validate the tree-based method are both test-set procedure and V-fold cross validation. The package contains the routines to compute the adjusted concordance index (a fuzzy version of the adjusted rand index) and the normalized degree of concordance (the corresponding fuzzy version of the rand index). Essential references: D'Ambrosio, A., Amodio, S., Iorio, C., Pandolfo, G., and Siciliano, R. (2021) doi:10.1007/s00357-020-09367-0 D'Ambrosio, A., and Heiser, W.J. (2019) doi:10.1007/s41237-018-0069-5; D'Ambrosio, A., and Heiser W.J. (2016) doi:10.1007/s11336-016-9505-1; Hullermeier, E., Rifqi, M., Henzgen, S., and Senge, R. (2012) doi:10.1109/TFUZZ.2011.2179303.
- Version1.0.1
- R versionunknown
- LicenseGPL-3
- Needs compilation?No
- D'Ambrosio, A., Amodio, S., Iorio, C., Pandolfo, G., and Siciliano, R. (2021) doi:10.1007/s00357-020-09367-0
- D'Ambrosio, A., and Heiser, W.J. (2019) doi:10.1007/s41237-018-0069-5
- D'Ambrosio, A., and Heiser W.J. (2016) doi:10.1007/s11336-016-9505-1
- Hullermeier, E., Rifqi, M., Henzgen, S., and Senge, R. (2012) doi:10.1109/TFUZZ.2011.2179303
- Last release09/28/2021
Documentation
Team
Antonio D'Ambrosio
Insights
Last 30 days
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Depends1 package
- Imports4 packages