ContRespPP
Predictive Probability for a Continuous Response with an ANOVA Structure
A Bayesian approach to using predictive probability in an ANOVA construct with a continuous normal response, when threshold values must be obtained for the question of interest to be evaluated as successful (Sieck and Christensen (2021) <doi:10.1002/qre.2802>). The Bayesian Mission Mean (BMM) is used to evaluate a question of interest (that is, a mean that randomly selects combination of factor levels based on their probability of occurring instead of averaging over the factor levels, as in the grand mean). Under this construct, in contrast to a Gibbs sampler (or Metropolis-within-Gibbs sampler), a two-stage sampling method is required. The nested sampler determines the conditional posterior distribution of the model parameters, given Y, and the outside sampler determines the marginal posterior distribution of Y (also commonly called the predictive distribution for Y). This approach provides a sample from the joint posterior distribution of Y and the model parameters, while also accounting for the threshold value that must be obtained in order for the question of interest to be evaluated as successful.
- Version0.4.2
- R versionunknown
- LicenseCC0
- Needs compilation?No
- Last release10/15/2022
Documentation
Team
Victoria Sieck
Joshua Clifford
Fletcher Christensen
Insights
Last 30 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Suggests6 packages