CovRegRF

Covariance Regression with Random Forests

CRAN Package

Covariance Regression with Random Forests (CovRegRF) is a random forest method for estimating the covariance matrix of a multivariate response given a set of covariates. Random forest trees are built with a new splitting rule which is designed to maximize the distance between the sample covariance matrix estimates of the child nodes. The method is described in Alakus et al. (2023) . 'CovRegRF' uses 'randomForestSRC' package (Ishwaran and Kogalur, 2022) by freezing at the version 3.1.0. The custom splitting rule feature is utilised to apply the proposed splitting rule. The 'randomForestSRC' package implements 'OpenMP' by default, contingent upon the support provided by the target architecture and operating system. In this package, 'LAPACK' and 'BLAS' libraries are used for matrix decompositions.

  • Version2.0.1
  • R version≥ 3.6.0
  • LicenseGPL (≥ 3)
  • Needs compilation?Yes
  • Last release07/15/2024

Documentation


Team


Insights

Last 30 days

Last 365 days

The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.

Data provided by CRAN


Binaries


Dependencies

  • Depends1 package
  • Imports3 packages
  • Suggests3 packages