DDoutlier

Distance & Density-Based Outlier Detection

CRAN Package

Outlier detection in multidimensional domains. Implementation of notable distance and density-based outlier algorithms. Allows users to identify local outliers by comparing observations to their nearest neighbors, reverse nearest neighbors, shared neighbors or natural neighbors. For distance-based approaches, see Knorr, M., & Ng, R. T. (1997) doi:10.1145/782010.782021, Angiulli, F., & Pizzuti, C. (2002) doi:10.1007/3-540-45681-3_2, Hautamaki, V., & Ismo, K. (2004) doi:10.1109/ICPR.2004.1334558 and Zhang, K., Hutter, M. & Jin, H. (2009) doi:10.1007/978-3-642-01307-2_84. For density-based approaches, see Tang, J., Chen, Z., Fu, A. W. C., & Cheung, D. W. (2002) doi:10.1007/3-540-47887-6_53, Jin, W., Tung, A. K. H., Han, J., & Wang, W. (2006) doi:10.1007/11731139_68, Schubert, E., Zimek, A. & Kriegel, H-P. (2014) doi:10.1137/1.9781611973440.63, Latecki, L., Lazarevic, A. & Prokrajac, D. (2007) doi:10.1007/978-3-540-73499-4_6, Papadimitriou, S., Gibbons, P. B., & Faloutsos, C. (2003) doi:10.1109/ICDE.2003.1260802, Breunig, M. M., Kriegel, H.-P., Ng, R. T., & Sander, J. (2000) doi:10.1145/342009.335388, Kriegel, H.-P., Kröger, P., Schubert, E., & Zimek, A. (2009) doi:10.1145/1645953.1646195, Zhu, Q., Feng, Ji. & Huang, J. (2016) doi:10.1016/j.patrec.2016.05.007, Huang, J., Zhu, Q., Yang, L. & Feng, J. (2015) doi:10.1016/j.knosys.2015.10.014, Tang, B. & Haibo, He. (2017) doi:10.1016/j.neucom.2017.02.039 and Gao, J., Hu, W., Zhang, X. & Wu, Ou. (2011) doi:10.1007/978-3-642-20847-8_23.


Documentation


Team


Insights

Last 30 days

Last 365 days

The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.

Data provided by CRAN


Binaries


Dependencies

  • Imports3 packages
  • Reverse Imports1 package
  • Reverse Suggests2 packages