DDoutlier
Distance & Density-Based Outlier Detection
Outlier detection in multidimensional domains. Implementation of notable distance and density-based outlier algorithms. Allows users to identify local outliers by comparing observations to their nearest neighbors, reverse nearest neighbors, shared neighbors or natural neighbors. For distance-based approaches, see Knorr, M., & Ng, R. T. (1997) doi:10.1145/782010.782021, Angiulli, F., & Pizzuti, C. (2002) doi:10.1007/3-540-45681-3_2, Hautamaki, V., & Ismo, K. (2004) doi:10.1109/ICPR.2004.1334558 and Zhang, K., Hutter, M. & Jin, H. (2009) doi:10.1007/978-3-642-01307-2_84. For density-based approaches, see Tang, J., Chen, Z., Fu, A. W. C., & Cheung, D. W. (2002) doi:10.1007/3-540-47887-6_53, Jin, W., Tung, A. K. H., Han, J., & Wang, W. (2006) doi:10.1007/11731139_68, Schubert, E., Zimek, A. & Kriegel, H-P. (2014) doi:10.1137/1.9781611973440.63, Latecki, L., Lazarevic, A. & Prokrajac, D. (2007) doi:10.1007/978-3-540-73499-4_6, Papadimitriou, S., Gibbons, P. B., & Faloutsos, C. (2003) doi:10.1109/ICDE.2003.1260802, Breunig, M. M., Kriegel, H.-P., Ng, R. T., & Sander, J. (2000) doi:10.1145/342009.335388, Kriegel, H.-P., Kröger, P., Schubert, E., & Zimek, A. (2009) doi:10.1145/1645953.1646195, Zhu, Q., Feng, Ji. & Huang, J. (2016) doi:10.1016/j.patrec.2016.05.007, Huang, J., Zhu, Q., Yang, L. & Feng, J. (2015) doi:10.1016/j.knosys.2015.10.014, Tang, B. & Haibo, He. (2017) doi:10.1016/j.neucom.2017.02.039 and Gao, J., Hu, W., Zhang, X. & Wu, Ou. (2011) doi:10.1007/978-3-642-20847-8_23.
- Version0.1.0
- R versionunknown
- LicenseMIT
- LicenseLICENSE
- Needs compilation?No
- Last release05/30/2018
Documentation
Team
Jacob H. Madsen
Insights
Last 30 days
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Imports3 packages
- Reverse Imports1 package
- Reverse Suggests2 packages