DNMF
Discriminant Non-Negative Matrix Factorization
Discriminant Non-Negative Matrix Factorization aims to extend the Non-negative Matrix Factorization algorithm in order to extract features that enforce not only the spatial locality, but also the separability between classes in a discriminant manner. It refers to three article, Zafeiriou, Stefanos, et al. "Exploiting discriminant information in nonnegative matrix factorization with application to frontal face verification." Neural Networks, IEEE Transactions on 17.3 (2006): 683-695. Kim, Bo-Kyeong, and Soo-Young Lee. "Spectral Feature Extraction Using dNMF for Emotion Recognition in Vowel Sounds." Neural Information Processing. Springer Berlin Heidelberg, 2013. and Lee, Soo-Young, Hyun-Ah Song, and Shun-ichi Amari. "A new discriminant NMF algorithm and its application to the extraction of subtle emotional differences in speech." Cognitive neurodynamics 6.6 (2012): 525-535.
- Version1.4.2
- R versionunknown
- LicenseGPL-2
- LicenseGPL-3
- Needs compilation?No
- DNMF citation info
- Last release05/10/2022
Documentation
Team
Zhilong Jia
Xiang Zhang
Show author detailsRolesAuthor
Insights
Last 30 days
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Depends1 package
- Imports4 packages