DRsurvCRT

Doubly-Robust Estimation for Survival Outcomes in Cluster-Randomized Trials

CRAN Package

Cluster-randomized trials (CRTs) assign treatment to groups rather than individuals, so valid analyses must distinguish cluster-level and individual-level effects and define estimands within a potential-outcomes framework. This package supports right-censored survival outcomes for both single-state (binary) and multi-state settings. For single-state outcomes, it provides estimands based on stage-specific survival contrasts (SPCE) and restricted mean survival time (RMST). For multi-state outcomes, it provides SPCE as well as a generalized win-based restricted mean time-in-favor estimand (RMT-IF). The package implements doubly robust estimators that accommodate covariate-dependent censoring and remain consistent if either the outcome model or the censoring model is correctly specified. Users can choose marginal Cox or gamma-frailty Cox working models for nuisance estimation, and inference is supported via leave-one-cluster-out jackknife variance and confidence interval estimation. Methods are described in Fang et al. (2025) "Estimands and doubly robust estimation for cluster-randomized trials with survival outcomes" doi:10.48550/arXiv.2510.08438.


Team


Insights

Last 30 days

The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.

Last 365 days

The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.

Data provided by CRAN


Binaries


Dependencies