DTRlearn2
Statistical Learning Methods for Optimizing Dynamic Treatment Regimes
We provide a comprehensive software to estimate general K-stage DTRs from SMARTs with Q-learning and a variety of outcome-weighted learning methods. Penalizations are allowed for variable selection and model regularization. With the outcome-weighted learning scheme, different loss functions - SVM hinge loss, SVM ramp loss, binomial deviance loss, and L2 loss - are adopted to solve the weighted classification problem at each stage; augmentation in the outcomes is allowed to improve efficiency. The estimated DTR can be easily applied to a new sample for individualized treatment recommendations or DTR evaluation.
- Version1.1
- R version≥ 2.10
- LicenseGPL-2
- Needs compilation?No
- Last release04/22/2020
Documentation
Team
Yuan Chen
Yuan Chen, Ying Liu, Donglin Zeng, Yuanjia Wang
Insights
Last 30 days
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Depends6 packages
- Reverse Suggests1 package