EMC2

Bayesian Hierarchical Analysis of Cognitive Models of Choice

CRAN Package

Fit Bayesian (hierarchical) cognitive models using a linear modeling language interface using particle metropolis Markov chain Monte Carlo sampling with Gibbs steps. The diffusion decision model (DDM), linear ballistic accumulator model (LBA), racing diffusion model (RDM), and the lognormal race model (LNR) are supported. Additionally, users can specify their own likelihood function and/or choose for non-hierarchical estimation, as well as for a diagonal, blocked or full multivariate normal group-level distribution to test individual differences. Prior specification is facilitated through methods that visualize the (implied) prior. A wide range of plotting functions assist in assessing model convergence and posterior inference. Models can be easily evaluated using functions that plot posterior predictions or using relative model comparison metrics such as information criteria or Bayes factors. References: Stevenson et al. (2024) doi:10.31234/osf.io/2e4dq.


Documentation


Team


Insights

Last 30 days

Last 365 days

The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.

Data provided by CRAN


Binaries


Dependencies

  • Imports16 packages
  • Suggests4 packages
  • Linking To1 package