EMJMCMC
Evolutionary Mode Jumping Markov Chain Monte Carlo Expert Toolbox
Implementation of the Mode Jumping Markov Chain Monte Carlo algorithm from Hubin, A., Storvik, G. (2018) doi:10.1016/j.csda.2018.05.020, Genetically Modified Mode Jumping Markov Chain Monte Carlo from Hubin, A., Storvik, G., & Frommlet, F. (2020) doi:10.1214/18-BA1141, Hubin, A., Storvik, G., & Frommlet, F. (2021) doi:10.1613/jair.1.13047, and Hubin, A., Heinze, G., & De Bin, R. (2023) doi:10.3390/fractalfract7090641, and Reversible Genetically Modified Mode Jumping Markov Chain Monte Carlo from Hubin, A., Frommlet, F., & Storvik, G. (2021) doi:10.48550/arXiv.2110.05316, which allow for estimating posterior model probabilities and Bayesian model averaging across a wide set of Bayesian models including linear, generalized linear, generalized linear mixed, generalized nonlinear, generalized nonlinear mixed, and logic regression models.
- Version1.5.0
- R version≥ 3.4.1
- LicenseGPL-2
- LicenseGPL-3
- Needs compilation?No
- Last release05/03/2024
Documentation
Team
Waldir Leoncio
Aliaksandr Hubin
Show author detailsRolesAuthorGeir Storvik
Show author detailsRolesContributorFlorian Frommlet
Show author detailsRolesContributor
Insights
Last 30 days
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Depends1 package
- Imports7 packages
- Suggests4 packages