EValue
Sensitivity Analyses for Unmeasured Confounding and Other Biases in Observational Studies and Meta-Analyses
Conducts sensitivity analyses for unmeasured confounding, selection bias, and measurement error (individually or in combination; VanderWeele & Ding (2017) doi:10.7326/M16-2607; Smith & VanderWeele (2019) doi:10.1097/EDE.0000000000001032; VanderWeele & Li (2019) doi:10.1093/aje/kwz133; Smith & VanderWeele (2021) doi:10.48550/arXiv.2005.02908). Also conducts sensitivity analyses for unmeasured confounding in meta-analyses (Mathur & VanderWeele (2020a) doi:10.1080/01621459.2018.1529598; Mathur & VanderWeele (2020b) doi:10.1097/EDE.0000000000001180) and for additive measures of effect modification (Mathur et al., under review).
- Version4.1.3
- R versionunknown
- LicenseGPL-2
- Needs compilation?No
- EValue citation info
- Last release10/28/2021
Documentation
Team
Maya B. Mathur
Louisa H. Smith
Show author detailsRolesAuthorPeng Ding
Show author detailsRolesAuthorTyler J. VanderWeele
Show author detailsRolesAuthor
Insights
Last 30 days
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Imports6 packages
- Suggests3 packages
- Reverse Imports1 package