EZtune

Tunes AdaBoost, Elastic Net, Support Vector Machines, and Gradient Boosting Machines

CRAN Package

Contains two functions that are intended to make tuning supervised learning methods easy. The eztune function uses a genetic algorithm or Hooke-Jeeves optimizer to find the best set of tuning parameters. The user can choose the optimizer, the learning method, and if optimization will be based on accuracy obtained through validation error, cross validation, or resubstitution. The function eztune.cv will compute a cross validated error rate. The purpose of eztune_cv is to provide a cross validated accuracy or MSE when resubstitution or validation data are used for optimization because error measures from both approaches can be misleading.

  • Version3.1.1
  • R version≥ 3.1.0
  • LicenseGPL-3
  • Needs compilation?No
  • Last release12/10/2021

Documentation


Team


Insights

Last 30 days

Last 365 days

The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.

Data provided by CRAN


Binaries


Dependencies

  • Depends1 package
  • Imports9 packages
  • Suggests8 packages