EnsembleBase
Extensible Package for Parallel, Batch Training of Base Learners for Ensemble Modeling
Extensible S4 classes and methods for batch training of regression and classification algorithms such as Random Forest, Gradient Boosting Machine, Neural Network, Support Vector Machines, K-Nearest Neighbors, Penalized Regression (L1/L2), and Bayesian Additive Regression Trees. These algorithms constitute a set of 'base learners', which can subsequently be combined together to form ensemble predictions. This package provides cross-validation wrappers to allow for downstream application of ensemble integration techniques, including best-error selection. All base learner estimation objects are retained, allowing for repeated prediction calls without the need for re-training. For large problems, an option is provided to save estimation objects to disk, along with prediction methods that utilize these objects. This allows users to train and predict with large ensembles of base learners without being constrained by system RAM.
- Version1.0.2
- R versionunknown
- LicenseGPL-2
- LicenseGPL-3
- Needs compilation?No
- Last release09/13/2016
Documentation
Team
Alireza S. Mahani
Mansour T.A. Sharabiani
Insights
Last 30 days
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Depends1 package
- Imports8 packages
- Reverse Depends3 packages