GEInter
Robust Gene-Environment Interaction Analysis
Description: For the risk, progression, and response to treatment of many complex diseases, it has been increasingly recognized that gene-environment interactions play important roles beyond the main genetic and environmental effects. In practical interaction analyses, outliers in response variables and covariates are not uncommon. In addition, missingness in environmental factors is routinely encountered in epidemiological studies. The developed package consists of five robust approaches to address the outliers problems, among which two approaches can also accommodate missingness in environmental factors. Both continuous and right censored responses are considered. The proposed approaches are based on penalization and sparse boosting techniques for identifying important interactions, which are realized using efficient algorithms. Beyond the gene-environment analysis, the developed package can also be adopted to conduct analysis on interactions between other types of low-dimensional and high-dimensional data. (Mengyun Wu et al (2017),
- Version0.3.2
- R version≥ 3.5.0
- LicenseGPL-2
- Needs compilation?No
- Last release05/19/2022
Documentation
Team
Xing Qin
Mengyun Wu
Show author detailsRolesAuthorShuangge Ma
Show author detailsRolesAuthor
Insights
Last 30 days
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Depends1 package
- Imports10 packages