GLDEX
Fitting Single and Mixture of Generalised Lambda Distributions
The fitting algorithms considered in this package have two major objectives. One is to provide a smoothing device to fit distributions to data using the weight and unweighted discretised approach based on the bin width of the histogram. The other is to provide a definitive fit to the data set using the maximum likelihood and quantile matching estimation. Other methods such as moment matching, starship method, L moment matching are also provided. Diagnostics on goodness of fit can be done via qqplots, KS-resample tests and comparing mean, variance, skewness and kurtosis of the data with the fitted distribution. References include the following: Karvanen and Nuutinen (2008) "Characterizing the generalized lambda distribution by L-moments" doi:10.1016/j.csda.2007.06.021, King and MacGillivray (1999) "A starship method for fitting the generalised lambda distributions" doi:10.1111/1467-842X.00089, Su (2005) "A Discretized Approach to Flexibly Fit Generalized Lambda Distributions to Data" doi:10.22237/jmasm/1130803560, Su (2007) "Nmerical Maximum Log Likelihood Estimation for Generalized Lambda Distributions" doi:10.1016/j.csda.2006.06.008, Su (2007) "Fitting Single and Mixture of Generalized Lambda Distributions to Data via Discretized and Maximum Likelihood Methods: GLDEX in R" doi:10.18637/jss.v021.i09, Su (2009) "Confidence Intervals for Quantiles Using Generalized Lambda Distributions" doi:10.1016/j.csda.2009.02.014, Su (2010) "Chapter 14: Fitting GLDs and Mixture of GLDs to Data using Quantile Matching Method" doi:10.1201/b10159, Su (2010) "Chapter 15: Fitting GLD to data using GLDEX 1.0.4 in R" doi:10.1201/b10159, Su (2015) "Flexible Parametric Quantile Regression Model" doi:10.1007/s11222-014-9457-1, Su (2021) "Flexible parametric accelerated failure time model"doi:10.1080/10543406.2021.1934854.
- Version2.0.0.9.3
- R versionunknown
- LicenseGPL (≥ 3)
- Needs compilation?Yes
- Karvanen and Nuutinen (2008) "Characterizing the generalized lambda distribution by L-moments"
- King and MacGillivray (1999) "A starship method for fitting the generalised lambda distributions"
- Su (2005) "A Discretized Approach to Flexibly Fit Generalized Lambda Distributions to Data"
- Su (2007) "Nmerical Maximum Log Likelihood Estimation for Generalized Lambda Distributions"
- Su (2007) "Fitting Single and Mixture of Generalized Lambda Distributions to Data via Discretized and Maximum Likelihood Methods: GLDEX in R"
- Su (2009) "Confidence Intervals for Quantiles Using Generalized Lambda Distributions"
- Su (2010) "Chapter 14: Fitting GLDs and Mixture of GLDs to Data using Quantile Matching Method"
- Su (2010) "Chapter 15: Fitting GLD to data using GLDEX 1.0.4 in R"
- Su (2015) "Flexible Parametric Quantile Regression Model"
- Su (2021) "Flexible parametric accelerated failure time model"
- Last release08/21/2023
Documentation
Team
Steve Su
Martin Maechler
Juha Karvanen
Show author detailsRolesAuthorR Core Team
Show author detailsRolesAuthorRobert King
Show author detailsRolesAuthorBenjamin Dean
Show author detailsRolesContributor
Insights
Last 30 days
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Depends2 packages
- Reverse Depends1 package
- Reverse Imports1 package
- Reverse Suggests1 package