GMKMcharlie

Unsupervised Gaussian Mixture and Minkowski and Spherical K-Means with Constraints

CRAN Package

High performance trainers for parameterizing and clustering weighted data. The Gaussian mixture (GM) module includes the conventional EM (expectation maximization) trainer, the component-wise EM trainer, the minimum-message-length EM trainer by Figueiredo and Jain (2002) doi:10.1109/34.990138. These trainers accept additional constraints on mixture weights, covariance eigen ratios and on which mixture components are subject to update. The K-means (KM) module offers clustering with the options of (i) deterministic and stochastic K-means++ initializations, (ii) upper bounds on cluster weights (sizes), (iii) Minkowski distances, (iv) cosine dissimilarity, (v) dense and sparse representation of data input. The package improved the typical implementations of GM and KM algorithms in various aspects. It is carefully crafted in multithreaded C++ for modeling large data for industry use.

  • Version1.1.5
  • R versionunknown
  • LicenseGPL-3
  • Needs compilation?Yes
  • Last release05/29/2021

Documentation


Team


Insights

Last 30 days

Last 365 days

The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.

Data provided by CRAN


Binaries


Dependencies

  • Imports2 packages
  • Suggests2 packages
  • Linking To3 packages