HDRFA
High-Dimensional Robust Factor Analysis
Factor models have been widely applied in areas such as economics and finance, and the well-known heavy-tailedness of macroeconomic/financial data should be taken into account when conducting factor analysis. We propose two algorithms to do robust factor analysis by considering the Huber loss. One is based on minimizing the Huber loss of the idiosyncratic error's L2 norm, which turns out to do Principal Component Analysis (PCA) on the weighted sample covariance matrix and thereby named as Huber PCA. The other one is based on minimizing the element-wise Huber loss, which can be solved by an iterative Huber regression algorithm. In this package we also provide the code for traditional PCA, the Robust Two Step (RTS) method by He et al. (2022) and the Quantile Factor Analysis (QFA) method by Chen et al. (2021) and He et al. (2023).
- Version0.1.5
- R version≥ 3.5.0
- LicenseGPL-2
- LicenseGPL-3
- Needs compilation?No
- Last release07/22/2024
Team
Dong Liu
Lingxiao Li
Show author detailsRolesAuthorYong He
Show author detailsRolesAuthorWenxin Zhou
Show author detailsRolesAuthor
Insights
Last 30 days
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Imports2 packages