HDoutliers
Leland Wilkinson's Algorithm for Detecting Multidimensional Outliers
An implementation of an algorithm for outlier detection that can handle a) data with a mixed categorical and continuous variables, b) many columns of data, c) many rows of data, d) outliers that mask other outliers, and e) both unidimensional and multidimensional datasets. Unlike ad hoc methods found in many machine learning papers, HDoutliers is based on a distributional model that uses probabilities to determine outliers.
- Version1.0.4
- R version≥ 3.1.0
- LicenseMIT
- Licensefile LICENSE
- Needs compilation?No
- Last release02/11/2022
Documentation
Team
Chris Fraley
Leland Wilkinson
Show author detailsRolesContributor
Insights
Last 30 days
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Depends4 packages
- Reverse Imports1 package