HierPortfolios
Hierarchical Risk Clustering Portfolio Allocation Strategies
Machine learning hierarchical risk clustering portfolio allocation strategies. The implemented methods are: Hierarchical risk parity (De Prado, 2016) doi:10.3905/jpm.2016.42.4.059. Hierarchical clustering-based asset allocation (Raffinot, 2017) doi:10.3905/jpm.2018.44.2.089. Hierarchical equal risk contribution portfolio (Raffinot, 2018) doi:10.2139/ssrn.3237540. A Constrained Hierarchical Risk Parity Algorithm with Cluster-based Capital Allocation (Pfitzingera and Katzke, 2019) https://www.ekon.sun.ac.za/wpapers/2019/wp142019/wp142019.pdf.
- Version1.0.1
- R versionunknown
- LicenseGPL-2
- Needs compilation?No
- Last release08/18/2024
Documentation
Team
Carlos Trucios
Moon Jun Kwon
Show author detailsRolesAuthorSão Paulo Research Foundation (FAPESP), grant 2022/09122-0
Show author detailsRolesfndPrograma de Incentivo a Novos Docentes da UNICAMP (PIND), grant 2525/23
Show author detailsRolesfnd
Insights
Last 30 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Imports2 packages