IDetect
Isolate-Detect Methodology for Multiple Change-Point Detection
Provides efficient implementation of the Isolate-Detect methodology for the consistent estimation of the number and location of multiple change-points in one-dimensional data sequences from the "deterministic + noise" model. For details on the Isolate-Detect methodology, please see Anastasiou and Fryzlewicz (2018) https://docs.wixstatic.com/ugd/24cdcc_6a0866c574654163b8255e272bc0001b.pdf. Currently implemented scenarios are: piecewise-constant signal with Gaussian noise, piecewise-constant signal with heavy-tailed noise, continuous piecewise-linear signal with Gaussian noise, continuous piecewise-linear signal with heavy-tailed noise.
- Version0.1.0
- R versionunknown
- LicenseGPL-3
- Needs compilation?No
- IDetect citation info
- Last release03/09/2018
Team
Andreas Anastasiou
Piotr Fryzlewicz
Show author detailsRolesAuthor
Insights
Last 30 days
This package has been downloaded 136 times in the last 30 days. More than a random curiosity, but not quite a blockbuster. Still, it's gaining traction! The following heatmap shows the distribution of downloads per day. Yesterday, it was downloaded 4 times.
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Last 365 days
This package has been downloaded 1,864 times in the last 365 days. Consider this 'mid-tier influencer' status—if it were a TikTok, it would get a nod from nieces and nephews. The day with the most downloads was Sep 11, 2024 with 29 downloads.
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Suggests1 package
- Reverse Imports1 package