IIProductionUnknown

Analyzing Data Through of Percentage of Importance Indice (Production Unknown) and Its Derivations

CRAN Package

The Importance Index (I.I.) can determine the loss and solution sources for a system in certain knowledge areas (e.g., agronomy), when production (e.g., fruits) is known (Demolin-Leite, 2021). Events (e.g., agricultural pest) can have different magnitudes (numerical measurements), frequencies, and distributions (aggregate, random, or regular) of event occurrence, and I.I. bases in this triplet (Demolin-Leite, 2021) . Usually, the higher the magnitude and frequency of aggregated distribution, the greater the problem or the solution (e.g., natural enemies versus pests) for the system (Demolin-Leite, 2021). However, the final production of the system is not always known or is difficult to determine (e.g., degraded area recovery). A derivation of the I.I. is the percentage of Importance Index-Production Unknown (% I.I.-PU) that can detect the loss or solution sources, when production is unknown for the system (Demolin-Leite, 2024) .

  • Version0.0.3
  • R versionunknown
  • LicenseGPL-3
  • Needs compilation?No
  • Languageen-US
  • Last release02/01/2023

Documentation


Team


Insights

Last 30 days

Last 365 days

The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.

Data provided by CRAN


Binaries


Dependencies

  • Depends1 package