Indicator
Composite 'Indicator' Construction and Imputation Data
Different functions includes constructing composite indicators, imputing missing data, and evaluating imputation techniques. Additionally, different tools for data normalization. Detailed methodologies of 'Indicator' package are: OECD/European Union/EC-JRC (2008), "Handbook on Constructing Composite Indicators: Methodology and User Guide", OECD Publishing, Paris, doi:10.1787/533411815016, Matteo Mazziotta & Adriano Pareto, (2018) "Measuring Well-Being Over Time: The Adjusted Mazziotta–Pareto Index Versus Other Non-compensatory Indices" doi:10.1007/s11205-017-1577-5 and De Muro P., Mazziotta M., Pareto A. (2011), "Composite Indices of Development and Poverty: An Application to MDGs" doi:10.1007/s11205-010-9727-z.
- Version0.1.2
- R version≥ 4.0
- LicenseUnlimited
- Needs compilation?No
- Languageen-USx
- OECD/European Union/EC-JRC (2008), "Handbook on Constructing Composite Indicators: Methodology and User Guide", OECD Publishing, Paris,
- Matteo Mazziotta & Adriano Pareto, (2018) "Measuring Well-Being Over Time: The Adjusted Mazziotta–Pareto Index Versus Other Non-compensatory Indices"
- De Muro P., Mazziotta M., Pareto A. (2011), "Composite Indices of Development and Poverty: An Application to MDGs"
- Last release06/11/2024
Documentation
Team
Gianmarco Borrata
Pasquale Pipiciello
Show author detailsRolesAuthor
Insights
Last 30 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Imports3 packages
- Suggests1 package