InterNL

Time Series Intervention Model Using Non-Linear Function

CRAN Package

Intervention analysis is used to investigate structural changes in data resulting from external events. Traditional time series intervention models, viz. Autoregressive Integrated Moving Average model with exogeneous variables (ARIMA-X) and Artificial Neural Networks with exogeneous variables (ANN-X), rely on linear intervention functions such as step or ramp functions, or their combinations. In this package, the Gompertz, Logistic, Monomolecular, Richard and Hoerl function have been used as non-linear intervention function. The equation of the above models are represented as: Gompertz: A * exp(-B * exp(-k * t)); Logistic: K / (1 + ((K - N0) / N0) * exp(-r * t)); Monomolecular: A * exp(-k * t); Richard: A + (K - A) / (1 + exp(-B * (C - t)))^(1/beta) and Hoerl: a*(b^t)*(t^c).This package introduced algorithm for time series intervention analysis employing ARIMA and ANN models with a non-linear intervention function. This package has been developed using algorithm of Yeasin et al. doi:10.1016/j.hazadv.2023.100325 and Paul and Yeasin doi:10.1371/journal.pone.0272999.


Team


Insights

Last 30 days

Last 365 days

The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.

Data provided by CRAN


Binaries


Dependencies

  • Imports2 packages