LoopDetectR
Comprehensive Feedback Loop Detection in ODE Models
Detect feedback loops (cycles, circuits) between species (nodes) in ordinary differential equation (ODE) models. Feedback loops are paths from a node to itself without visiting any other node twice, and they have important regulatory functions. Loops are reported with their order of participating nodes and their length, and whether the loop is a positive or a negative feedback loop. An upper limit of the number of feedback loops limits runtime (which scales with feedback loop count). Model parametrizations and values of the modelled variables are accounted for. Computation uses the characteristics of the Jacobian matrix as described e.g. in Thomas and Kaufman (2002) doi:10.1016/s1631-0691(02)01452-x. Input can be the Jacobian matrix of the ODE model or the ODE function definition; in the latter case, the Jacobian matrix is determined using 'numDeriv'. Graph-based algorithms from 'igraph' are employed for path detection.
- Version0.1.2
- R version≥ 4.0.0
- LicenseGPL-3
- Needs compilation?No
- Last release07/20/2020
Documentation
Team
Katharina Baum
Sandra Krüger
Show author detailsRolesContributor
Insights
Last 30 days
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Imports2 packages
- Suggests5 packages