MEGB
Gradient Boosting for Longitudinal Data
Gradient boosting is a powerful statistical learning method known for its ability to model complex relationships between predictors and outcomes while performing inherent variable selection. However, traditional gradient boosting methods lack flexibility in handling longitudinal data where within-subject correlations play a critical role. In this package, we propose a novel approach Mixed Effect Gradient Boosting ('MEGB'), designed specifically for high-dimensional longitudinal data. 'MEGB' incorporates a flexible semi-parametric model that embeds random effects within the gradient boosting framework, allowing it to account for within-individual covariance over time. Additionally, the method efficiently handles scenarios where the number of predictors greatly exceeds the number of observations (p>>n) making it particularly suitable for genomics data and other large-scale biomedical studies.
- Version0.1
- R versionunknown
- LicenseGPL-2
- Needs compilation?No
- Last release01/29/2025
Team
Oyebayo Ridwan Olaniran
MaintainerShow author detailsSaidat Fehintola Olaniran
Show author detailsRolesAuthor
Insights
Last 30 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Imports3 packages
- Suggests1 package