ODS
Statistical Methods for Outcome-Dependent Sampling Designs
Outcome-dependent sampling (ODS) schemes are cost-effective ways to enhance study efficiency. In ODS designs, one observes the exposure/covariates with a probability that depends on the outcome variable. Popular ODS designs include case-control for binary outcome, case-cohort for time-to-event outcome, and continuous outcome ODS design (Zhou et al. 2002) doi:10.1111/j.0006-341X.2002.00413.x. Because ODS data has biased sampling nature, standard statistical analysis such as linear regression will lead to biases estimates of the population parameters. This package implements four statistical methods related to ODS designs: (1) An empirical likelihood method analyzing the primary continuous outcome with respect to exposure variables in continuous ODS design (Zhou et al., 2002). (2) A partial linear model analyzing the primary outcome in continuous ODS design (Zhou, Qin and Longnecker, 2011) doi:10.1111/j.1541-0420.2010.01500.x. (3) Analyze a secondary outcome in continuous ODS design (Pan et al. 2018) doi:10.1002/sim.7672. (4) An estimated likelihood method analyzing a secondary outcome in case-cohort data (Pan et al. 2017) doi:10.1111/biom.12838.
- Version0.2.0
- R version≥ 3.5.0
- LicenseGPL-2
- LicenseGPL-3
- Needs compilation?No
- Last release11/19/2018
Documentation
Team
Yinghao Pan
Jianwen Cai
Show author detailsRolesAuthorHaibo Zhou
Show author detailsRolesAuthorMark Weaver
Show author detailsRolesAuthorGuoyou Qin
Show author detailsRolesAuthor
Insights
Last 30 days
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Imports2 packages