PJFM
Variational Inference for High-Dimensional Joint Frailty Model
Joint frailty models have been widely used to study the associations between recurrent events and a survival outcome. However, existing joint frailty models only consider one or a few recurrent events and cannot deal with high-dimensional recurrent events. This package can be used to fit our recently developed penalized joint frailty model that can handle high-dimensional recurrent events. Specifically, an adaptive lasso penalty is imposed on the parameters for the effects of the recurrent events on the survival outcome, which allows for variable selection. Also, our algorithm is computationally efficient, which is based on the Gaussian variational approximation method.
- Version0.1.0
- R version≥ 3.6.0
- LicenseGPL-2
- Needs compilation?Yes
- Last release11/06/2024
Team
Jiehuan Sun
Insights
Last 30 days
This package has been downloaded 418 times in the last 30 days. Now we're getting somewhere! Enough downloads to populate a lively group chat. The following heatmap shows the distribution of downloads per day. Yesterday, it was downloaded 6 times.
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Last 365 days
This package has been downloaded 2,308 times in the last 365 days. Consider this 'mid-tier influencer' status—if it were a TikTok, it would get a nod from nieces and nephews. The day with the most downloads was Feb 11, 2025 with 51 downloads.
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Imports5 packages
- Linking To3 packages