RAEN

Random Approximate Elastic Net (RAEN) Variable Selection Method

CRAN Package

The Proportional Subdistribution Hazard (PSH) model has been popular for estimating the effects of the covariates on the cause of interest in Competing Risks analysis. The fast accumulation of large scale datasets has posed a challenge to classical statistical methods. Current penalized variable selection methods show unsatisfactory performance in ultra-high dimensional data. We propose a novel method, the Random Approximate Elastic Net (RAEN), with a robust and generalized solution to the variable selection problem for the PSH model. Our method shows improved sensitivity for variable selection compared with current methods.


Documentation


Team


Insights

Last 30 days

Last 365 days

The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.

Data provided by CRAN


Binaries


Dependencies

  • Depends2 packages
  • Imports5 packages
  • Suggests3 packages