ROCnReg
ROC Curve Inference with and without Covariates
Estimates the pooled (unadjusted) Receiver Operating Characteristic (ROC) curve, the covariate-adjusted ROC (AROC) curve, and the covariate-specific/conditional ROC (cROC) curve by different methods, both Bayesian and frequentist. Also, it provides functions to obtain ROC-based optimal cutpoints utilizing several criteria. Based on Erkanli, A. et al. (2006) doi:10.1002/sim.2496; Faraggi, D. (2003) doi:10.1111/1467-9884.00350; Gu, J. et al. (2008) doi:10.1002/sim.3366; Inacio de Carvalho, V. et al. (2013) doi:10.1214/13-BA825; Inacio de Carvalho, V., and Rodriguez-Alvarez, M.X. (2022) doi:10.1214/21-STS839; Janes, H., and Pepe, M.S. (2009) doi:10.1093/biomet/asp002; Pepe, M.S. (1998) http://www.jstor.org/stable/2534001?seq=1; Rodriguez-Alvarez, M.X. et al. (2011a) doi:10.1016/j.csda.2010.07.018; Rodriguez-Alvarez, M.X. et al. (2011a) doi:10.1007/s11222-010-9184-1. Please see Rodriguez-Alvarez, M.X. and Inacio, V. (2021) doi:10.32614/RJ-2021-066 for more details.
- Version1.0-9
- R versionunknown
- LicenseGPL-2
- LicenseGPL-3
- Needs compilation?No
- ROCnReg citation info
- Last release05/31/2024
Documentation
Team
Maria Xose Rodriguez-Alvarez
Vanda Inacio
Insights
Last 30 days
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Imports8 packages
- Reverse Suggests1 package