RobMixReg
Robust Mixture Regression
Finite mixture models are a popular technique for modelling unobserved heterogeneity or to approximate general distribution functions in a semi-parametric way. They are used in a lot of different areas such as astronomy, biology, economics, marketing or medicine. This package is the implementation of popular robust mixture regression methods based on different algorithms including: fleximix, finite mixture models and latent class regression; CTLERob, component-wise adaptive trimming likelihood estimation; mixbi, bi-square estimation; mixL, Laplacian distribution; mixt, t-distribution; TLE, trimmed likelihood estimation. The implemented algorithms includes: CTLERob stands for Component-wise adaptive Trimming Likelihood Estimation based mixture regression; mixbi stands for mixture regression based on bi-square estimation; mixLstands for mixture regression based on Laplacian distribution; TLE stands for Trimmed Likelihood Estimation based mixture regression. For more detail of the algorithms, please refer to below references. Reference: Chun Yu, Weixin Yao, Kun Chen (2017)
- Version1.1.0
- R version≥ 3.5.0
- LicenseGPL-2
- LicenseGPL-3
- Needs compilation?No
- Last release08/05/2020
Documentation
Team
Wennan Chang
Sha Cao
Show author detailsRolesAuthor, Copyright holder, Thesis advisorChi Zhang
Show author detailsRolesAuthor, Contributor, Thesis advisor
Insights
Last 30 days
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Depends1 package
- Imports16 packages