SLOPE
Sorted L1 Penalized Estimation
Efficient implementations for Sorted L-One Penalized Estimation (SLOPE): generalized linear models regularized with the sorted L1-norm (Bogdan et al. 2015). Supported models include ordinary least-squares regression, binomial regression, multinomial regression, and Poisson regression. Both dense and sparse predictor matrices are supported. In addition, the package features predictor screening rules that enable fast and efficient solutions to high-dimensional problems.
- Version0.5.1
- R version≥ 3.5.0
- LicenseGPL-3
- Needs compilation?Yes
- Languageen-US
- SLOPE citation info
- Last release07/09/2024
Documentation
Team
Johan Larsson
Jonas Wallin
Malgorzata Bogdan
Show author detailsRolesAuthorEwout van den Berg
Show author detailsRolesAuthorChiara Sabatti
Show author detailsRolesAuthorEmmanuel Candes
Show author detailsRolesAuthorEvan Patterson
Show author detailsRolesAuthorWeijie Su
Show author detailsRolesAuthorJakub Kała
Show author detailsRolesAuthorKrystyna Grzesiak
Show author detailsRolesAuthorMichal Burdukiewicz
Jerome Friedman
Show author detailsRolesContributorTrevor Hastie
Show author detailsRolesContributorRob Tibshirani
Show author detailsRolesContributorBalasubramanian Narasimhan
Show author detailsRolesContributorNoah Simon
Show author detailsRolesContributorJunyang Qian
Show author detailsRolesContributorAkarsh Goyal
Show author detailsRolesContributor
Insights
Last 30 days
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Depends1 package
- Imports5 packages
- Suggests13 packages
- Linking To2 packages
- Reverse Depends1 package
- Reverse Suggests1 package