SSGL
Spike-and-Slab Group Lasso for Group-Regularized Generalized Linear Models
Fits group-regularized generalized linear models (GLMs) using the spike-and-slab group lasso (SSGL) prior introduced by Bai et al. (2022) doi:10.1080/01621459.2020.1765784 and extended to GLMs by Bai (2023) doi:10.48550/arXiv.2007.07021. This package supports fitting the SSGL model for the following GLMs with group sparsity: Gaussian linear regression, binary logistic regression, Poisson regression, negative binomial regression, and gamma regression. Stand-alone functions for group-regularized negative binomial regression and group-regularized gamma regression are also available, with the option of employing the group lasso penalty of Yuan and Lin (2006) doi:10.1111/j.1467-9868.2005.00532.x, the group minimax concave penalty (MCP) of Breheny and Huang doi:10.1007/s11222-013-9424-2, or the group smoothly clipped absolute deviation (SCAD) penalty of Breheny and Huang (2015) doi:10.1007/s11222-013-9424-2.
- Version1.0
- R version≥ 3.6.0
- LicenseGPL-3
- Needs compilation?Yes
- Last release06/27/2023
Team
Ray Bai
Insights
Last 30 days
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Imports3 packages