SeBR

Semiparametric Bayesian Regression Analysis

CRAN Package

Monte Carlo and MCMC sampling algorithms for semiparametric Bayesian regression analysis. These models feature a nonparametric (unknown) transformation of the data paired with widely-used regression models including linear regression, spline regression, quantile regression, and Gaussian processes. The transformation enables broader applicability of these key models, including for real-valued, positive, and compactly-supported data with challenging distributional features. The samplers prioritize computational scalability and, for most cases, Monte Carlo (not MCMC) sampling for greater efficiency. Details of the methods and algorithms are provided in Kowal and Wu (2023) doi:10.48550/arXiv.2306.05498.


Documentation


Team


Insights

Last 30 days

Last 365 days

The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.

Data provided by CRAN


Binaries


Dependencies

  • Imports6 packages
  • Suggests2 packages