StepReg

Stepwise Regression Analysis

CRAN Package

The stepwise regression analysis is a statistical technique used to identify a subset of predictor variables essential for constructing predictive models. This package performs stepwise regression analysis across various regression models such as linear, logistic, Cox proportional hazards, Poisson, Gamma, and negative binomial regression. It incorporates diverse stepwise regression algorithms like forward selection, backward elimination, and bidirectional elimination alongside the best subset method. Additionally, it offers a wide range of selection criteria, including Akaike Information Criterion (AIC), Sawa Bayesian Information Criterion (BIC), and Significance Levels (SL). We validated the output accuracy of StepReg using public datasets within the SAS software environment. To facilitate efficient model comparison and selection, StepReg allows for multiple strategies and selection metrics to be executed in a single function call. Moreover, StepReg integrates a Shiny application for interactive regression analysis, broadening its accessibility.


Documentation


Team


Insights

Downloads for...

  • Yesterday37+42%
  • Last 7 days266-36%
  • Last 30 days1.147+14%
  • Last 90 days3.121-5%
  • Last 365 days42.436+353%

Data provided by cranlogs


Binaries


Dependencies

  • Imports18 packages
  • Suggests4 packages