TIGERr

Technical Variation Elimination with Ensemble Learning Architecture

CRAN Package

The R implementation of TIGER. TIGER integrates random forest algorithm into an innovative ensemble learning architecture. Benefiting from this advanced architecture, TIGER is resilient to outliers, free from model tuning and less likely to be affected by specific hyperparameters. TIGER supports targeted and untargeted metabolomics data and is competent to perform both intra- and inter-batch technical variation removal. TIGER can also be used for cross-kit adjustment to ensure data obtained from different analytical assays can be effectively combined and compared. Reference: Han S. et al. (2022) doi:10.1093/bib/bbab535.


Documentation


Team


Insights

Last 30 days

Last 365 days

The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.

Data provided by CRAN


Binaries


Dependencies

  • Imports3 packages