TSdeeplearning

Deep Learning Model for Time Series Forecasting

CRAN Package

RNNs are preferred for sequential data like time series, speech, text, etc. but when dealing with long range dependencies, vanishing gradient problems account for their poor performance. LSTM and GRU are effective solutions which are nothing but RNN networks with the abilities of learning both short-term and long-term dependencies. Their structural makeup enables them to remember information for a long period without any difficulty. LSTM consists of one cell state and three gates, namely, forget gate, input gate and output gate whereas GRU comprises only two gates, namely, reset gate and update gate. This package consists of three different functions for the application of RNN, LSTM and GRU to any time series data for its forecasting. For method details see Jaiswal, R. et al. (2022). doi:10.1007/s00521-021-06621-3.

  • Version0.1.0
  • R versionunknown
  • LicenseGPL-3
  • Needs compilation?No
  • Last release09/09/2022

Documentation


Team


Insights

Last 30 days

Last 365 days

The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.

Data provided by CRAN


Binaries


Dependencies

  • Imports5 packages
  • Reverse Imports2 packages