TopicScore
The Topic SCORE Algorithm to Fit Topic Models
Provides implementation of the "Topic SCORE" algorithm that is proposed by Tracy Ke and Minzhe Wang. The singular value decomposition step is optimized through the usage of svds() function in 'RSpectra' package, on a 'dgRMatrix' sparse matrix. Also provides a column-wise error measure in the word-topic matrix A, and an algorithm for recovering the topic-document matrix W given A and D based on quadratic programming. The details about the techniques are explained in the paper "A new SVD approach to optimal topic estimation" by Tracy Ke and Minzhe Wang (2017)
- Version0.0.1
- R version≥ 3.5.0
- LicenseMIT
- Licensefile LICENSE
- Needs compilation?No
- Last release06/06/2019
Team
Minzhe Wang
Tracy Ke
Show author detailsRolesAuthor
Insights
Last 30 days
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Depends1 package
- Imports8 packages