TransTGGM
Transfer Learning for Tensor Graphical Models
Tensor Gaussian graphical models (GGMs) have important applications in numerous areas, which can interpret conditional independence structures within tensor data. Yet, the available tensor data in one single study is often limited due to high acquisition costs. Although relevant studies can provide additional data, it remains an open question how to pool such heterogeneous data. This package implements a transfer learning framework for tensor GGMs, which takes full advantage of informative auxiliary domains even when non-informative auxiliary domains are present, benefiting from the carefully designed data-adaptive weights. Reference: Ren, M., Zhen Y., and Wang J. (2022). "Transfer learning for tensor graphical models"
- Version1.0.0
- R version≥ 3.5.0
- LicenseGPL-2
- Needs compilation?No
- Last release11/23/2022
Documentation
Team
Mingyang Ren
Yaoming Zhen
Show author detailsRolesAuthorJunhui Wang
Show author detailsRolesAuthor
Insights
Last 30 days
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Depends1 package
- Imports7 packages
- Suggests2 packages