VBJM

Variational Inference for Joint Model

CRAN Package

The shared random effects joint model is one of the most widely used approaches to study the associations between longitudinal biomarkers and a survival outcome and make dynamic risk predictions using the longitudinally measured biomarkers. One major limitation of joint models is that they could be computationally expensive for complex models where the number of the shared random effects is large. This package can be used to fit complex multivariate joint models using our newly developed algorithm Jieqi Tu and Jiehuan Sun (2023) <doi:10.1002/sim.9619>, which is based on Gaussian variational approximate inference and is computationally efficient.

  • Version0.1.0
  • R versionunknown
  • LicenseGPL-2
  • Needs compilation?Yes
  • Last release09/02/2023

Team


Insights

Last 30 days

Last 365 days

The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.

Data provided by CRAN


Binaries


Dependencies

  • Imports5 packages
  • Linking To3 packages