VBJM
Variational Inference for Joint Model
The shared random effects joint model is one of the most widely used approaches to study the associations between longitudinal biomarkers and a survival outcome and make dynamic risk predictions using the longitudinally measured biomarkers. One major limitation of joint models is that they could be computationally expensive for complex models where the number of the shared random effects is large. This package can be used to fit complex multivariate joint models using our newly developed algorithm Jieqi Tu and Jiehuan Sun (2023) <doi:10.1002/sim.9619>, which is based on Gaussian variational approximate inference and is computationally efficient.
- Version0.1.0
- R versionunknown
- LicenseGPL-2
- Needs compilation?Yes
- Last release09/02/2023
Team
Jiehuan Sun
Insights
Last 30 days
This package has been downloaded 152 times in the last 30 days. Enough downloads to make a small wave in the niche community. The curiosity is spreading! The following heatmap shows the distribution of downloads per day. Yesterday, it was downloaded 6 times.
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Last 365 days
This package has been downloaded 1,718 times in the last 365 days. Now we’re talking! This work is officially 'heard of in academic circles', just like those wild research papers on synthetic bananas. The day with the most downloads was Jan 22, 2025 with 21 downloads.
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Imports5 packages
- Linking To3 packages