VLTimeCausality
Variable-Lag Time Series Causality Inference Framework
A framework to infer causality on a pair of time series of real numbers based on variable-lag Granger causality and transfer entropy. Typically, Granger causality and transfer entropy have an assumption of a fixed and constant time delay between the cause and effect. However, for a non-stationary time series, this assumption is not true. For example, considering two time series of velocity of person A and person B where B follows A. At some time, B stops tying his shoes, then running to catch up A. The fixed-lag assumption is not true in this case. We propose a framework that allows variable-lags between cause and effect in Granger causality and transfer entropy to allow them to deal with variable-lag non-stationary time series. Please see Chainarong Amornbunchornvej, Elena Zheleva, and Tanya Berger-Wolf (2021) doi:10.1145/3441452 when referring to this package in publications.
- Version0.1.5
- R versionunknown
- LicenseGPL-3
- Needs compilation?No
- Languageen-US
- VLTimeCausality citation info
- Last release05/28/2024
Documentation
Team
Chainarong Amornbunchornvej
Insights
Last 30 days
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Depends3 packages
- Imports1 package
- Suggests3 packages