WeMix

Weighted Mixed-Effects Models Using Multilevel Pseudo Maximum Likelihood Estimation

CRAN Package

Run mixed-effects models that include weights at every level. The WeMix package fits a weighted mixed model, also known as a multilevel, mixed, or hierarchical linear model (HLM). The weights could be inverse selection probabilities, such as those developed for an education survey where schools are sampled probabilistically, and then students inside of those schools are sampled probabilistically. Although mixed-effects models are already available in R, WeMix is unique in implementing methods for mixed models using weights at multiple levels. Both linear and logit models are supported. Models may have up to three levels. Random effects are estimated using the PIRLS algorithm from 'lme4pureR' (Walker and Bates (2013) ).

  • Version4.0.3
  • R versionunknown
  • LicenseGPL-2
  • Needs compilation?No
  • Last release11/03/2023

Documentation


Team


Insights

Last 30 days

Last 365 days

The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.

Data provided by CRAN


Binaries


Dependencies

  • Depends1 package
  • Imports4 packages
  • Suggests7 packages
  • Reverse Imports1 package