asm
Optimal Convex M-Estimation for Linear Regression via Antitonic Score Matching
Performs linear regression with respect to a data-driven convex loss function that is chosen to minimize the asymptotic covariance of the resulting M-estimator. The convex loss function is estimated in 5 steps: (1) form an initial OLS (ordinary least squares) or LAD (least absolute deviation) estimate of the regression coefficients; (2) use the resulting residuals to obtain a kernel estimator of the error density; (3) estimate the score function of the errors by differentiating the logarithm of the kernel density estimate; (4) compute the L2 projection of the estimated score function onto the set of decreasing functions; (5) take a negative antiderivative of the projected score function estimate. Newton's method (with Hessian modification) is then used to minimize the convex empirical risk function. Further details of the method are given in Feng et al. (2024) doi:10.48550/arXiv.2403.16688.
- Version0.2.0
- R versionunknown
- LicenseGPL (≥ 3)
- Needs compilation?No
- Last release05/11/2024
Team
Min Xu
Richard J. Samworth
Show author detailsRolesAuthorOliver Y. Feng
Show author detailsRolesAuthorYu-Chun Kao
Show author detailsRolesAuthor
Insights
Last 30 days
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Imports5 packages