bapred
Batch Effect Removal and Addon Normalization (in Phenotype Prediction using Gene Data)
Various tools dealing with batch effects, in particular enabling the removal of discrepancies between training and test sets in prediction scenarios. Moreover, addon quantile normalization and addon RMA normalization (Kostka & Spang, 2008) is implemented to enable integrating the quantile normalization step into prediction rules. The following batch effect removal methods are implemented: FAbatch, ComBat, (f)SVA, mean-centering, standardization, Ratio-A and Ratio-G. For each of these we provide an additional function which enables a posteriori ('addon') batch effect removal in independent batches ('test data'). Here, the (already batch effect adjusted) training data is not altered. For evaluating the success of batch effect adjustment several metrics are provided. Moreover, the package implements a plot for the visualization of batch effects using principal component analysis. The main functions of the package for batch effect adjustment are ba() and baaddon() which enable batch effect removal and addon batch effect removal, respectively, with one of the seven methods mentioned above. Another important function here is bametric() which is a wrapper function for all implemented methods for evaluating the success of batch effect removal. For (addon) quantile normalization and (addon) RMA normalization the functions qunormtrain(), qunormaddon(), rmatrain() and rmaaddon() can be used.
- Version1.1
- R version≥ 3.1.0
- LicenseGPL-2
- Needs compilation?No
- bapred citation info
- Last release06/22/2022
Team
Roman Hornung
Roman Hornung, David Causeur
Insights
Last 30 days
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Depends6 packages
- Imports6 packages
- Suggests1 package