basket
Basket Trial Analysis
Implementation of multisource exchangeability models for Bayesian analyses of prespecified subgroups arising in the context of basket trial design and monitoring. The R 'basket' package facilitates implementation of the binary, symmetric multi-source exchangeability model (MEM) with posterior inference arising from both exact computation and Markov chain Monte Carlo sampling. Analysis output includes full posterior samples as well as posterior probabilities, highest posterior density (HPD) interval boundaries, effective sample sizes (ESS), mean and median estimations, posterior exchangeability probability matrices, and maximum a posteriori MEMs. In addition to providing "basketwise" analyses, the package includes similar calculations for "clusterwise" analyses for which subgroups are combined into meta-baskets, or clusters, using graphical clustering algorithms that treat the posterior exchangeability probabilities as edge weights. In addition plotting tools are provided to visualize basket and cluster densities as well as their exchangeability. References include Hyman, D.M., Puzanov, I., Subbiah, V., Faris, J.E., Chau, I., Blay, J.Y., Wolf, J., Raje, N.S., Diamond, E.L., Hollebecque, A. and Gervais, R (2015)
- Version0.10.11
- R version≥ 3.5.0
- LicenseLGPL-2
- Needs compilation?No
- basket citation info
- Last release10/16/2021
Documentation
Team
Michael J. Kane
Nan Chen
Show author detailsRolesAuthorRyan Hafen
Show author detailsRolesContributorBrian Hobbs
Show author detailsRolesAuthorAlex Kaizer
Show author detailsRolesAuthor
Insights
Last 30 days
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Depends1 package
- Imports15 packages
- Suggests4 packages