bhmbasket
Bayesian Hierarchical Models for Basket Trials
Provides functions for the evaluation of basket trial designs with binary endpoints. Operating characteristics of a basket trial design are assessed by simulating trial data according to scenarios, analyzing the data with Bayesian hierarchical models (BHMs), and assessing decision probabilities on stratum and trial-level based on Go / No-go decision making. The package is build for high flexibility regarding decision rules, number of interim analyses, number of strata, and recruitment. The BHMs proposed by Berry et al. (2013) doi:10.1177/1740774513497539 and Neuenschwander et al. (2016) doi:10.1002/pst.1730, as well as a model that combines both approaches are implemented. Functions are provided to implement Bayesian decision rules as for example proposed by Fisch et al. (2015) doi:10.1177/2168479014533970. In addition, posterior point estimates (mean/median) and credible intervals for response rates and some model parameters can be calculated. For simulated trial data, bias and mean squared errors of posterior point estimates for response rates can be provided.
- Version0.9.5
- R version≥ 3.5.0
- LicenseGPL-3
- Needs compilation?No
- bhmbasket citation info
- Last release02/14/2022
Documentation
Team
Stephan Wojciekowski
Insights
Last 30 days
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Imports3 packages
- Suggests4 packages
- Reverse Imports1 package
- Reverse Suggests1 package