bnlearn

Bayesian Network Structure Learning, Parameter Learning and Inference

CRAN Package

Bayesian network structure learning, parameter learning and inference. This package implements constraint-based (PC, GS, IAMB, Inter-IAMB, Fast-IAMB, MMPC, Hiton-PC, HPC), pairwise (ARACNE and Chow-Liu), score-based (Hill-Climbing and Tabu Search) and hybrid (MMHC, RSMAX2, H2PC) structure learning algorithms for discrete, Gaussian and conditional Gaussian networks, along with many score functions and conditional independence tests. The Naive Bayes and the Tree-Augmented Naive Bayes (TAN) classifiers are also implemented. Some utility functions (model comparison and manipulation, random data generation, arc orientation testing, simple and advanced plots) are included, as well as support for parameter estimation (maximum likelihood and Bayesian) and inference, conditional probability queries, cross-validation, bootstrap and model averaging. Development snapshots with the latest bugfixes are available from https://www.bnlearn.com/.


Documentation


Team


Insights

Last 30 days

Last 365 days

The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.

Data provided by CRAN


Binaries


Dependencies

  • Suggests6 packages
  • Reverse Depends3 packages
  • Reverse Imports21 packages
  • Reverse Suggests7 packages