cellWise
Analyzing Data with Cellwise Outliers
Tools for detecting cellwise outliers and robust methods to analyze data which may contain them. Contains the implementation of the algorithms described in Rousseeuw and Van den Bossche (2018) doi:10.1080/00401706.2017.1340909 (open access) Hubert et al. (2019) doi:10.1080/00401706.2018.1562989 (open access), Raymaekers and Rousseeuw (2021) doi:10.1080/00401706.2019.1677270 (open access), Raymaekers and Rousseeuw (2021) doi:10.1007/s10994-021-05960-5 (open access), Raymaekers and Rousseeuw (2021) doi:10.52933/jdssv.v1i3.18 (open access), Raymaekers and Rousseeuw (2022) doi:10.48550/arXiv.2207.13493 (open access) Rousseeuw (2022) doi:10.1016/j.ecosta.2023.01.007 (open access). Examples can be found in the vignettes: "DDC_examples", "MacroPCA_examples", "wrap_examples", "transfo_examples", "DI_examples", "cellMCD_examples", "Correspondence_analysis_examples", and "cellwise_weights_examples".
- Version2.5.3
- R versionunknown
- LicenseGPL-2
- LicenseGPL-3
- Needs compilation?Yes
- Last release10/25/2023
Documentation
Team
Jakob Raymaekers
Mia Hubert
Peter Rousseeuw
Wannes Van den Bossche
Show author detailsRolesContributor
Insights
Last 30 days
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Imports10 packages
- Suggests7 packages
- Linking To2 packages
- Reverse Imports10 packages
- Reverse Suggests1 package