changepoints
A Collection of Change-Point Detection Methods
Performs a series of offline and/or online change-point detection algorithms for 1) univariate mean: doi:10.1214/20-EJS1710, doi:10.48550/arXiv.2006.03283; 2) univariate polynomials: doi:10.1214/21-EJS1963; 3) univariate and multivariate nonparametric settings: doi:10.1214/21-EJS1809, doi:10.1109/TIT.2021.3130330; 4) high-dimensional covariances: doi:10.3150/20-BEJ1249; 5) high-dimensional networks with and without missing values: doi:10.1214/20-AOS1953, doi:10.48550/arXiv.2101.05477, doi:10.48550/arXiv.2110.06450; 6) high-dimensional linear regression models: doi:10.48550/arXiv.2010.10410, doi:10.48550/arXiv.2207.12453; 7) high-dimensional vector autoregressive models: doi:10.48550/arXiv.1909.06359; 8) high-dimensional self exciting point processes: doi:10.48550/arXiv.2006.03572; 9) dependent dynamic nonparametric random dot product graphs: doi:10.48550/arXiv.1911.07494; 10) univariate mean against adversarial attacks: doi:10.48550/arXiv.2105.10417.
- Version1.1.0
- R versionunknown
- LicenseGPL (≥ 3)
- Needs compilation?Yes
- Last release09/04/2022
Documentation
Team
Haotian Xu
Oscar Padilla
Show author detailsRolesAuthorDaren Wang
Show author detailsRolesAuthorMengchu Li
Show author detailsRolesAuthorQin Wen
Show author detailsRolesContributor
Insights
Last 30 days
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Imports6 packages
- Suggests4 packages
- Linking To2 packages